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S T R E N G T H  OF A J O I N T  U N D E R  S T R E S S  C O N C E N T R A T I O N  

M. A. Zadoyan UDC 539.3 

In structural design, investigation of the low stress problem for the end of a contact surface in a 
composite body allows one to ensure the reliable strength of the given joint by a proper choice of physical and 
geometrical parameters [1, 2]. However, at fixed values of the indicated parameters, the low stress condition 
may not be satisfied, and a concentrated stressed state occurs at this end. Thus, it becomes necessary to 
formulate strength conditions in the presence of stress concentration. 

In this work, using the sectioning method, which is well known in engineering mechanics, we examine 
the strength of a joint in composite bodies with exponential strengthening of materials in the presence of 
stress concentration. The use of the sectioning method in the linear mechanics of cracks is covered in [3]. 

Let a composite body be made of two dissimilar materials. The stress and strain intensities are related 
by the exponential dependence or0 = kr n. For both materials, the values of the parameter m are considered 
equal and the values of k different. 

We assume that at the end of the contact surface of the composite body there is a reentrant angular 
"cut" with stress concentration at the tip. Assume that we know a solution of the corresponding problem 
ignoring the stress concentration caused by the "cut." This stressed state will be called nominal. Further, 
using this solution for the neighborhood of the angular point, we should find the strength condition for the 
end of the joint with the stress concentration state. 

1. Twi s t i ng .  We consider a composite bar of constant cross section made of materials strengthening 
by an exponential law. The bar has a reentrant angle at the end of the contact surface and is twisted by the 
moments M applied at the end cross sections. 

Initial Relations. We assume that the nominal solution, i.e., without an angular cut, is specified in the 
polar coordinate system p~a (Fig. 1). We denote stresses by Tpi(p, ~a) and T~i(p,~a), and displacements by 
Wi(p, ~a). Here and below, the subscript i = 1 and 2 denotes the values of the constituent materials. 

Longitudinal shear strains occur in the vicinity of the angular point r = 0. 
According to [2], this solution is representable as 

7"0i -= kir(A-1)m f~xi , 7"ri --__ Akir(A-1)rn fixi ' 

in which 

wi =rafi ,  Xi = (~/f~2 + A2f])m-a,  (1.1) 

a a 0 

f 1 =  Aexp ( - / r  ./'2= Aexp ( - / r 1 6 2  
0 0 0 

A = fl(c~) is an arbitrary constant, and r A) is found from the relations 

arctan - ~ - + - - w  arctan--w = a - O  for O~<O<~a, 

arctan ~ + - - w  arctan--to = r  1 +  to fl--O for ~ 1 +  to --/3~<0~<0, 

w h e r e w = ~ / A ( A + n - 1 )  a n d n = l / m  
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R =po+a R / 7 ~  A 

Fig. 1 

The parameter  A is determined from the following system of three equations in Izi = r A) and A: 

/.q (~12  + )~2),n-1 ( ~ ) , n - 1  ~ I - A  /~I 
- 7 # 2  = 0 ,  a r c t a n - - +  a r c t a n - - = a ,  

td O) 

1 - A #2 1 - A (1.2) 
a r c t a n - ~ + - - a r c t a n w  --=~rClw + w ) - ~  ( 7 = k 2 / k l ) "  

If we introduce the notation Sl = 2a/Tr - 1 and s2 = 2~/~r - 1, the solution of system (1.2) takes the 
form A = A(Sl,S2,7, m). When the angle is symmetric about the contact surface, i.e., a = 8, or when the 
material is homogeneous, A is defined as 

2 +s [(n-- l)s--~/4n +(n-- l)2s 2] 
A =  2 ( 1 - s  2) for s #  1, 

, k = l / ( n + l )  for s = l .  (1.3) 

Here s = 2a/~r - 1. 
The second value of A in (1.3) also follows from the first formula in the limit s --* 1. 
We assume that ,  at the tested end of the contact surface, the conditions ,~ < 1 and r < a + fl ~< 2r  or 

0 < sl + s2 ~< 2 are satisfied. For the symmetric angle, we have ~r/2 < a <~ 7r or 0 < s ~< 1. 
Fracture Surface. Introducing the notation 

N = kif~(O)xi(O), Fi(O) = f~(O)Xi(O)/(f~(O)xi(O)), 

we write the stress components (1.1) in the form 

roi = Nr(X-1)mFi(O), rri = ~firoi/f~. (1.4) 

The desired constant N = lira r0i(r, 0) r0-~)m has dimension kg-cm0-X)m-2  and is similar in some 
r ~ 0  

sense to the stress-intensity coefficient at the crack tip. The coefficient N can be determined approximately 
using the above-mentioned sectioning method. 

We pass mentally a section through the plane ~ = O, and, rejecting one part of the bar, we analyze 
the equilibrium of the remaining part under the action of longitudinal tangential forces acting in the axial 
section for a bar with no reentrant angle and for a bar with a reentrant angle. We assume that,  owing to the 
angular cut, the longitudinal force decreases by a value equal to the contribution of the concentrated forces. 

Projecting the tangential forces in the longitudinal direction and equating the sum of the minimal 
forces acting in the interval P0 ~< P ~< R in a bar with no angular cut to the sum of the concentrated forces 
acting in the interval 0 ~< r ~ r0 in a bar with an angular cut, we find 

r 0 R 

/,o,(r,O)er = / 01 dp. (1.2) 
0 po 

Here r0 is the unknown distance from the angular point, at which the concentrated stress is equated to the 
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nominal stress: 

r0i(r0, 0) = T,i(p0, 0). (1.6) 

In Eqs. (1.5) and (1.6), according to [3], the nominal stress is taken at the angular point and the 
nominal forces in the interval of concentrated stress are ignored. These assumptions somehow compensate for 
the decreased asymptot ic  value of the local stress compared with its exact value. 

Subst i tut ing the expression of r0i(r, 0) from (1.4) into (1.5) and (1.6), we have 

R 
Tr~I--A) rn T~i(p,O) 

N= ro = [1+(A-l)m l/ ' -- T~i(Po, O) dp, (1.7) 
Po 

where r = T~,i(p0,0) is the nominal stress at the angular point considered. Introducing the notat ion p = ~R 
and R - p0 = A = 5R, from (1.7), we obtain 

g = r{A[1 + (A - 1) m]r  rn)} (1-A)m. (1.8) 

Here 
1 

1 
r =-~ / H(~;5,7, m)d~. (1.9) 

1-~ 

The function H = Hi does not depend on the external moment  M and is determined by the integrand (1.7) 
with the above replacements of the dimensionless variable and parameters.  

The critical value of r for which the joint failed at the angular point considered is denoted by r . ,  
and the corresponding value of M is denoted by M,.  The parameter  7"., which depends on the constituent 
materials, the realization of the joint, the binding material,  the manufacture of surfaces for the contact,  etc., 
is determined from experiments.  For a homogeneous material,  r .  is determined by the fracturing twisting 
moment  M..  

According to (1.8), the critical value of N is writ ten as 

N, = r,{A[1 + (A - 1)role} ( ' -Din.  (1.10) 

In the space of our parameter,  the resulting equation (1.10), i.e., N, = N,(sl ,s2,  A,5, m),  can be 
interpreted as a fracture hypersurface. For fixed values of the parameters A, 5, 7, and m, the equation 
N, = N,(sl ,s2) defines the limiting fracture surface in the three-dimensional space sls2N1. This surface 
separates the s t rength region (below the surface) from the fracture region (above the surface). When the 
angle is symmetric,  in the coordinate plane sN,, we have the limiting fracture curve N, = N,(s) ,  which 
separates the s t rength and fracture regions. 

Using (1.4) and (1.10), we can write the critical value of the contact stress as 

r$i(r, 0) = r,  {[1 + (A - 1) mlr  0-~)m. (1.11) 

Twisting of a Cylindrical Tube. Let us study the twisting of a long, thick-walled cylindrical tube of an 
exponentially strengthening,  homogeneous material that  has an angular cut on the outer surface (Fig. 2). 
The nominal stress is known [4]: 

2 r R  m+3 tim, h =  1 -  

Here R and a are the radii of the outer and inner surfaces of the tube. We also have 
(m + 3) Mh 

= T (p0) - 2 Rm+3 H = p m / p y .  
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Fig. 2 

Integrat ing (1.9) yields 

It is evident  tha t  r ~ 1 as ~ --~ 0. 

Here 

1 - (1 - 6 )  r n + l  

(I) = (m + 1)6(1 - $)m" (1.12) 

The critical value of N in (1.10) is wri t ten as 

, , r  A[1 + (A - 1) m][1 -- (1 - (~)m+l] l(1--)~)m 
N, 

t ~,7-71)-7~ ~)m j �9 

and A is defined by (1.3). 

(1.13) 

(m + 3) M,h (1 - ~i) m, (1.14) 
r .  = 27rR 3 

For fixed values of A,  6, and m, Eq. (1.13) defines the  limiting fracture  curve N ,  = N , ( s ) ,  which 
separates the  s t rength  and f rac ture  regions. 

In the  case of a slit (crack),  i.e., for s = 1, sett ing A = m/(m + 1) in (1.13), we find 

( A n  - (1 - 6)-+11 
N,  ("m "+- 1 ~ 1  - 6 ~ .  " (1.15) T, 

% 

For values of g tha t  are small  compared  with unity, it follows from (1.13) and (1.14) tha t  

N , -  (m + 3) M,h 
27rR 3 {A[1 + (A - 1)rn]} (1-~)m. 

Hence, for the case of a slit, we obta in  

N, (m + 3) M,h ( A._._~m/(re+x) 
- 27rR 3 \ m  + 1 ] " (1.16) 

When  the mater ia l  is l inearly elastic, assuming that  m = 1 and A = 1/(s + 1) in (1.13), we have 

2(1 - ~) M ,  r A(x  - ~/2) 1,/(s+') 
n, = ~ n ~ l  :-TaT-~) 4] [ ( f - ;~T(;u i)] (1.17) 

In the  case of a slit, assuming that  s = 1, from (1.17) we find 

N,  x/~M. x/~q(1 - ~)(1 - / f / 2 )  
- 7rns/"-'----~ 1 - (a/R) 4 (1.18) 

Hence, for small g or from (!.16) for m = 1, we obta in  

vf2 M,R-512V~ 
N ,  - ( 1 . 1 9 )  ~r 1-(a/R) 4" 
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Assuming that a / R  = 0.5 and calculating M, for 6 = 0.05 by formula (1.19) and for 6 = 0.2 by 
(1.18), we find N ,  = O.1M, R -5/2 and N ,  = O.18M, R -5/2, respectively. Comparison of these formulas (after 
multiplication by v / ~ )  with the exact solutions given in the form of plots in [5, p. 723] shows that  the results 
obtained herein are underest imated by about 10%. 

Figure 3 shows the limiting curves constructed by formula (1.13) for 8 = 0.2 at fixed values of the 
parameters A and m. 

The critical contact stresses obtained from (1.11) and (1.12) for ~ = 0.2 are given in Fig. 4. 
Composite Linear-Elastic Bar. Let a bar to be twisted consist of two linear-elastic rectangular bars 

connected by complete slipping along the lateral surfaces. At the ends of the contact surface there are two 
identical reentrant angles that are symmetric about this surface (Fig. 5). 

This problem without angular cuts is generally solved in [6]. According to [6], the nominal contact 
pressure is written as 

Tzi(0, y) = ~ [4 ~ (-1) '~fl"(7) s inp.  y 

where f t ,  = (1/w,)  { [7+(1 - 7) cosh p.  c2] sinh Pn cl ~ sinh Pn c2 }, wn = cosh p, c2 sinh pn Cl + 7 cosh Pn cl sinh p,  c2, 
pn = (2n + 1)r /2 ,  7 = k2 /k l ,  ci = ai/b, ki are the shear moduli of the materials, D = (8/3)(cl + "~c2) + 

r 

32 ~--~ Vn-TR .  ,=0 p~w, ' Q" = c~ c ~ 1 7 6  coshp ,  c2, and R ,  = coshp ,  c l + c o s h p ,  c 2 -  
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coshpn(Cl + c2) - 1. The nominal pressure at the angular point is r = Ti(0, V0) = MS(7, *)/(Db3). Here 
CO 

S = 4 ~ ( - - l )n~n(7)  sinpn(1 -- 6) + 6 -- 1; b - Y0 = A = ~Sb. 
n = O  p2 

The critical value of r is expressed in terms of the fracturing moment as r. = M,S/Db 3. 
Next, calculating integral (1.9), introducing the variable ~ = y/b, and assuming that A = 1/(s + 1), 

from (1.8) we obtain 

N, = r ,  r  , (1.20) 

where 

1 [8~__0(-1)" f l , (7  ) s i n P n ( 2 _ 6 )  s inPn 1 ] r  5-6+3 6 - 1  
Note also that r ~ 1 as 6 ~ 0. For s = 1, i.e., for a slit, relation (1.20) leads to the relation N. = 

r . ~  ~ k / ~ ,  6). For fixed value of the parameters A, 6, and 7, Eq. (1.20) gives the limiting fracture curve, 
which separates the strength and fracture regions. 

2. P l a n e  D e f o r m a t i o n .  Let a composite body with exponential strengthening of the materials be in 
the state of plane deformation. We assume that at the end of the contact surface there is a reentrant angle 
that is free of external forces and stress concentrations. For the case of plane deformation, we shall also use 
Fig. 1. 

Initial Relations and Equations. Let the solution of the general problem, i.e., without a reentrant angle, 
be known. The stress components Tpi, T~i, and Tp~i and the displacement components ui and vi, which are 
still called nominal, are assumed to be given in the polar coordinate system p~. On the other hand, we shall 
proceed from the local solution at the angular point considered in the polar coordinate system r8 given in 
[2]. In this solution, we shall replace the functions fi(8, A) by Afi(O, )0, where A is an arbitrary constant and 
fi(0, A) is a solution of the following system of differential equations: 

[(f~' + Pfi)xi]" + v(f~' + #fi)xi  + 4rl(f~xi)' = 0. (2.1) 

Here Xi = ( r  + Pfi) 2 + 4)~2f~2) (m-l), ,k is the desired parameter, r/ = )~[1 + ( ~ -  1)m], /s = 1 - A 2, 

and v = 1 - r/2/~ 2. If we introduce the notation ~ri(0) = (1/()~ - 1)m){[(f~'  + I~fi)xi]' + 4rlf~xi} and 

ri(O) = (f~' + I~fi)xi, on the edges that are free from external forces, the boundary-contact conditions are of 
the following form: 
on the outer edges, 

~ i = r i = O  for 0 = a ; - / 3 ;  (2.2) 

and on the contact surface, 

O'1 = ")'0"2, T1 = 7T2,  f l  = f 2 ,  f l  = f2 = 1 for 8 = 0. (2.3) 

In this case, the normalization condition is adopted without loss of generality. As before, 7 = k2/kl, where 
k, are strain moduli of the materials. We assume that the problem of finding the function fi(O,A) and 

�9 the parameter ,k from (2.1)-(2.3) is solved. Using the previous notation, we assume that the value of A = 
X(sl, s2, 7, m) is determined by a numerical or other method. In the case of a slit and a homogeneous material 
[7, 8], we have ~ = m/(m + 1). In the general case, we assume that the angle is reentrant, and A < 1, i.e., we 
have stress concentrations. 

Fracture Surface. Introducing the notation A[A]m-lkifli = N, fli = t a ~ ( 0 ) +  r/2(0), we write the 
contact stresses [2] in the vicinity of the angular point as 

aoi(r,O) = Nr()'-Um~zi(O)/fli, rroi(r,O) = Nr('X-Omri(O)/fli. (2.4) 
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The constant 

N -  ai(O)f~i ~i~ crOi(r'O) = ri(O)f~i r-olimrr~ 

which has dimension kg .  cm (1-X)m-2 and is to be determined, is similar to the stress-intensity coefficient in 
the expressions of stresses at the crack tip. 

Next, we introduce the intensity of nominal stresses on the contact surface T(p) = 
CT2~i(p, O)+ T2~i(p, 0), and, similarly, the intensity of concentrated stresses, p(r) = Ca~i(r  , O) + r20i(r, O) = 
Nr(X-1)rn. 

At an unknown distance ro from the angular point on the contact surface the concentrated-stress 
intensity are equated to the nominal-stress intensity p(ro) = T(po), which leads to the equation 

Nr~ ~-l)m = T(po), (2.5) 

which contains the unknown constant N and r0. 
To derive the second equation, according to the sectioning method,  we mentally pass a section through 

the plane ~p = 0, and, rejecting one part of the body, we analyze the equilibrium of the remaining part. We 
assume that ,  owing to the angular cut, which does not transfer stresses in the interval p0 ~< p ~< R, the force is 
transferred by stresses with a singularity at the angular point. For an intact body without  an angle, the normal 
and tangential nominal stresses acting in the indicated interval must  be equilibrated by the concentrated and 
tangential stresses acting on the contact surface in the interval 0 ~< r <~ r0 in the vicinity of the angular point. 

In the particular case where one of the two stress components is absent on the contact surface, we have 
one equilibrium equation, which is sufficient, together with (2.5), to determine N and r0. 

To find the second equation in the general case, we consider the function 

U = p2 + Q2, (2.6) 

where 
R r0 R r0 

PO 0 PO 0 

Here P is the difference of the normal nominal and concentrated forces acting in the above-mentioned intervals 
of the contact surface and Q is the difference of the tangential nominal and concentrated forces acting in the 
same intervals. 

Substi tut ing expressions aoi(r, O) and r, oi(r, 0) from (2.4) into (2.7), integrating, and then eliminating 
r0, according to (2.5), we find 

R R 

P = f 0) dp - NoB / , ,(0) (2.8) fl--~, Q = To~i(p, O) dp - NoB fl---{-, 
Po PO 

where 

No = NII(I-~)~; B = (ii[1 + (A - 1) m]) [T(po)] l+I/(1-)~)m. 

Substi tut ing (2.8) into (2.6), defining the first derivative of U with respect to No as 

a v  [ T,(0)] 
ONo = - 2 B  P ~ + Q  fli J' 

and equating to zero, we find No and then N in the form 
R 

N = T(p0){[1 + ( A -  1)m] f (7,(0)T~i(p, 0)~,T(p0) + Ti(O)Tp~i(p,O) dp}(1-A)m. 
P0 

(2.9) 

(2.1o) 
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It is easy to see that  02UION 2 = 2B 2 > 0. This means that  the N determined from (2.10) provides a minimal 
value of the function U. 

The critical value of N is writ ten as 

where 

N ,  = T , { A [ 1  + (A - 1) rn](I)((5, % rn)} (1-A)m, (2.11) 

1 

1 i gP = -~ H(~;8,7, rn)d~. (2.12) 
1-8 

Here the function H is given by the integrand (2.10) with passage to the dimensionless variable and parameters,  
and T, denotes the parameter  T(po) for which fracture of the joint occurs at the angular point.  The  parameter  
7', is determined experimental ly by measuring the fracturing external forces at which fracture of the material 
occurs at the angular point. 

The critical values of stresses on the contact surface with allowance for (2.11) can be writ ten as 

a$i(r,O ) ~'r*oi(r,O) T. ( A )  (1-)t)m 
o'i(0) "ri(0) = fl'-'~ _ _ _  {[1 -I- (~ -- 1)m]dg(~,%rn)} (a-~)m. 

Cylindrical Tube under Internal Pressure. We consider a long, thick-walled homogeneous tube that  is 
made of an exponentially s trengthening material and has a radial symmetric angular cut on the inner surface. 
Let the tube be under  uniform internal pressure p (in Fig. 2, ar = - p  is added). 

The nominal  pressure, according to [9], is written as 

R --2m 
T~(p)= lP- / '  [ X + ( 2 m - l ) ( p )  ], ' =  ( R )  2m. 

Here a and R are the radii of the outer and inner surface of the tube and R - P0 = A = 8R. The  nominal 
pressure at the angular point is T~(po) = ~l/(1 -/)][1 + (2m - 1)(1 - 8)-2m]. 

Calculating the integral from (2.10) and (2.12) and taking into account that  ri(0) = 0, we find 

(1 - 8)[1 - (1 - 8) 2m] (2.13) 
= 612m - 1 + (1 - 8)2m]" 

Hence it follows tha t  r ---+ 1 as $ --+ 0. From (2.11) we have 

N, = T,{A[1 + (~ / -  1)m]ep(8, m)} 0-x)m, (2.14) 

where A = A(s, m) and 7", = [p,//(1 - / ) ] [1  + (2m - 1)(1 - 8)-2m]. Here p, is the critical pressure at which 
fracture at the angular point considered occurs; T, is determined experimentally (by measuring p,).  

For fixed parameters  8 and m, Eq. (2.14), i.e., N, = N,(s,6, m), gives the limiting fracture curve, 
which separates the s t rength and fracture regions. For the case of a slit, assuming that  ~/= m/(rn + 1) [7, 8], 
we obtain 

a lm/(' '+l)  
N, = T, ~ (I)(6, m)] . (2.15) 

Taking into account the value of the function r (2.13) for small values of c5, from (2.15) we have 

[ A ~m/(m+i) 2mp,(a/R)2m (2.16) 
N .  = ' q" = 1 - ( < , l R ) 2 m  

Figure 6 shows plots of N,/q, versus m for three values of the parameter  A. In the case of a crack in 
a linear-elastic material,  from (2.13) and (2.14) we find 

vf2p,(alR)2v/A r - (5/2)(1 - (5  + 65/2) 

N .  = 1 - ( a i R ) 2  (1 - 6 ) s / 2  
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Hence, for small values of 8, or from (2.16) for m = 1 we have 

N, = v / 2 p * ( a l n ) ~ v ~  
1 - ( a i R ) 2  

Comparison of the resulting formula for small values of ~ (after multiplication by x/~-~) with the 
corresponding exact value [10, p. 320] (for a circular ring) shows a decrease by about 10%. With increase in 
~, this difference increases. 

The indicated deviations of the values of N from the exact values are of a one-sided character - -  toward 
underestimation (see also [3]). Therefore, the approximate values of N obtained herein can be considered as 
lower bounds. 

We are grateful to Professor M. E. Morozov for discussions of the results and valuable remarks. 
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